پیش بینی صادرات غیر نفتی ایران: الگوهای رگرسیونی و شبکه عصبی مصنوعی

Authors: not saved
Abstract:

در نوشتار حاضر از الگوهای شبکه عصبی مصنوعی و SARIMA برای پیش بینی مقادیر صادرات غیرنفتی ایران استفاده شده است. برای این منظور سری زمانی ماهیانه ارزش صادرات غیرنفتی طی سال‌های 1380 تا 1388 مورد استفاده قرار گرفته است. مقایسه قدرت پیش بینی دو الگوی فوق به کمک معیارهای خطای میانگین، ریشه دوم میانگین خطا، میانگین خطای مطلق، میانگین درصد خطا و میانگین درصد خطای مطلق انجام شد. مقدار MAPE برابر با 44/0 درصد نشان دهنده برتری شبکه عصبی مصنوعی در پیش بینی صادرات غیرنفتی در قیاس با الگوی فصلی SARIMA است.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

ارزیابی مدل هیبرید شبکه عصبی مصنوعی-پانل دیتا در پیش بینی قیمت صادرات خشکبار ایران

در بسیاری از مطالعات برای پیش بینی متغیرهای اقتصادی اغلب از روش های کمی مبتنی بر داده های سری زمانی یا مقطع زمانی استفاده می شود. مطالعات سری زمانی و مقطع زمانی ناهمگنی کشورها را کنترل نمی کنند و همواره ریسک به دست آورن نتایج و پیش بینی های اریب دار وجود دارد. داده های پانل اطلاعات و درجه آزادی بیشتری را فراهم می آورد که این امر موجب حصول نتایج و پیش بینی های دقیق تری می شود. با توجه به سهم قاب...

full text

مدلسازی و پیش بینی صادرات آبزیان دریایی در ایران با استفاده از روش ARIMA و شبکه های عصبی مصنوعی

هدف اصلی این مقاله، مدلسازی و پیش بینی میزان صادرات آبزیان دریایی در ایران است. برای این منظور، از روش های سری زمانی خود توضیح جمعی میانگین متحرک(ARIMA) و شبکه عصبی مصنوعی استفاده می شود. به منظور انجام بررسی، از داده های ماهانه دوره 1374:03 تا 1387:12 برای برآورد و آموزش مدل و از داده های دوره از 1388:01 تا 1390:12 به منظور بررسی قدرت پیش بینی مدل های مختلف استفاده می شود. در این مطالعه، معیار...

full text

کاربرد شبکه های عصبی مصنوعی در پیش بینی بارش زمستانه

پیش‌بینی بارش یکی از مهم‌ترین مسائل در زمینه مدیریت بهینه منابع آب در بخش‌های مختلف نظیر صنعت، شرب و کشاورزی است. پیش بینی بارش می تواند باعث جلوگیری از تلفات و خسارات ناشی از بلایای طبیعی شود. هدف از تحقیق حاضر پیش‌بینی بارش زمستانه استان خراسان رضوی با استفاده از شبکه‌های عصبی مصنوعی می‌باشد. بدین منظور، ابتدا سری زمانی بارش متوسط منطقه‌ای به روش کریجینگ در طول دوره آماری به دست آورده شد. سپس...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 5  issue 13

pages  67- 90

publication date 2011-04-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023